A Logical Account of Causal and Topological Maps
نویسندگان
چکیده
ii Chapter 1 Dissertation Overview 1 Chapter 2 SSH Overview 6 2.1 The Spatial Semantic Hierarchy . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Creating Schemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 The SSH topological level: regions . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Physical Implementation of the SSH . . . . . . . . . . . . . . . . . . . . . 10 Chapter 3 Control Level 12 3.1 SSH control assumptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.1 The SSH control closure property . . . . . . . . . . . . . . . . . . 13 3.1.2 Well separated dstate . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.3 From control laws to actions . . . . . . . . . . . . . . . . . . . . . 14 3.2 Voronoi robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Chapter 4 Causal Level 16 4.1 Causal level Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1.1 Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1.2 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1.3 Distinctive States . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1.4 Schemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1.5 Schema notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.1.6 Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2 SSH Causal theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2.1 The E formulae. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2.2 The SSH view graph . . . . . . . . . . . . . . . . . . . . . . . . . 24
منابع مشابه
On continuous cohomology of locally compact Abelian groups and bilinear maps
Let $A$ be an abelian topological group and $B$ a trivial topological $A$-module. In this paper we define the second bilinear cohomology with a trivial coefficient. We show that every abelian group can be embedded in a central extension of abelian groups with bilinear cocycle. Also we show that in the category of locally compact abelian groups a central extension with a continuous section can b...
متن کامل$L$-Topological Spaces
By substituting the usual notion of open sets in a topological space $X$ with a suitable collection of maps from $X$ to a frame $L$, we introduce the notion of L-topological spaces. Then, we proceed to study the classical notions and properties of usual topological spaces to the newly defined mathematical notion. Our emphasis would be concentrated on the well understood classical connectedness...
متن کاملOn topological transitive maps on operator algebras
We consider the transitive linear maps on the operator algebra $B(X)$for a separable Banach space $X$. We show if a bounded linear map is norm transitive on $B(X)$,then it must be hypercyclic with strong operator topology. Also we provide a SOT-transitivelinear map without being hypercyclic in the strong operator topology.
متن کاملEntropy Estimate for Maps on Forests
A 1993 result of J. Llibre, and M. Misiurewicz, (Theorem A [5]), states that if a continuous map f of a graph into itself has an s-horseshoe, then the topological entropy of f is greater than or equal to logs, that is h( f ) ? logs. Also a 1980 result of L.S. Block, J. Guckenheimer, M. Misiurewicz and L.S. Young (Lemma 1.5 [3]) states that if G is an A-graph of f then h(G) ? h( f ). In this pap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001